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Codimension-two bifurcations and interactions between 
differently polarised fields for the laser with saturable absorber 
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Institute for Information Sciences, University of Tubingen, Kostlinstrasse 6 ,  D-7400 
Tubingen, Federal Republic of Germany 

Received 2 September 1988 

Abstract. The equations for the laser with a saturable absorber in the mean-field limit and 
exact resonance are considered. For critical values of the number of active atoms in the 
laser and the absorber the equations exhibit a codimension-two degeneracy of the Takens- 
Bogdanov type, where a stationary bifurcation and a Hopf bifurcation with infinite period 
coalesce. In contrast to previous work, the envelopes of the electric field and the atomic 
polarisations are treated as complex variables. This allows us to take differently polarised 
laser fields into account. As a consequence the equations possess an O(2) symmetry which 
is also present in the normal form describing the Takens-Bogdanov bifurcation. We 
compute the relevant normal form coefficients and apply previous results to divide the 
space of the physical parameters into a number of regions that give rise to qualitatively 
different bifurcation scenarios. These include hysteretic and continuous stability exchanges 
between circularly polarised and modulated linearly polarised laser fields. 

1. Introduction 

A paradigm for systems with competing instabilities is provided by the laser with a 
saturable absorber (Arimondo 1985, Degiorgio and Lugiato 1980, Mandel and Erneux 
1984, Velarde 1982). While the pumping in the active material acts to destabilise the 
rest state, the presence of the absorber induces a stabilising effect. The competition 
between stabilising and destabilising effects gives rise to a variety of phenomena that 
are not present in ordinary laser systems. Although in the absence of the absorber the 
first instability, or primary bifurcation, always leads to a steady lasing state which 
bifurcates supercritically from the rest state, the laser with absorber may exhibit 
supercritical and subcritical stationary as well as Hopf bifurcations leading to modu- 
lated laser fields, depending on t t e  ratios of the various relaxation constants. 

An important feature of most systems with competing instabilities is the appearance 
of a multiple bifurcation of the Takens-Bogdanov type in which a stationary and a 
Hopf bifurcation with infinite period coalesce (Carr 1981, Guckenheimer and Holmes 
1983, Knobloch and Proctor 1981). If  no continuous symmetry is present it is deter- 
mined by a double zero eigenvalue with a 2 x 2 nilpotent Jordan block of the linearised 
system, i.e. the flow is contracted to a two-dimensional centre manifold. Generically 
the Takens-Bogdanov bifurcation has codimension two, although for proper choices 
of the physical parameters one also encounters higher degeneracies in the equations 
underlying the laser with absorber. An analysis of these degeneracies is given by 
Dangelmayr et a1 (1985, 1986) under the assumption that the envelopes of the electric 
field and the atomic polarisations are real variables. This means that polarisation 
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effects of the laser field are neglected. Our purpose here is to study the appearance 
of the Takens-Bogdanov bifurcation in the equations for the laser with saturable 
absorber for the case where the envelopes of the electric field and the atomic polarisa- 
tions are treated as complex variables, confining ourselves to the generic codimension- 
two situation. The complex treatment introduces an important symmetry into the 
problem, namely an O(2) symmetry which reflects the fact that the polarisation direction 
of the laser field is not uniquely determined. As a consequence, the centre manifold 
is four dimensional, so that the flow on it is described by a system of normal form 
ODE for four real or two complex variables. A detailed mathematical analysis of the 
normal form is presented in Dangelmayr and Knobloch (1987) (henceforth referred 
to as D K ) .  Here we apply these results to the equations for the laser with absorber. 
In § 2 we compute the non-linear coefficients of the normal form from the basic laser 
equations. Our main results are presented in § 3, where the space of the physical 
parameters is divided into a number of regions that give rise to different bifurcation 
scenarios. They are related to different cases of the normal form according to the 
classification given in DK. Whereas the real treatment always predicts a stable modu- 
lated linearly polarised laser field (Dangelmayr er a1 1985, 1986), that state turns out 
to be mostly unstable in favour of a stable circularly polarised field. This and other 
physical implications are discussed in § 4. 

2. Reduction to normal form 

In the mean-field limit and exact resonance the laser with saturable absorber is described 
in dimensionless variables by the equations (Verlarde 1982, Antoranz and Velarde 
1988): 

U = p [ - a + d p  + r ,  ( 1 - % ) q ] ( l a )  

p = a ( l  - d ) - p  (1b) 
q = Ka(1-  e )  - r ,q  ( I C )  

d = w [ - d + ;( aij + Csp )]  ( I d )  

e = w [ - r , e + $ ( a i j + t i p ) ]  ( l e )  

where the overbar denotes complex conjugation and the dots represent the time 
derivative d/dr. In ( 1 )  a is the envelope of the electric field, p and d are, respectively, 
proportional to the atomic polarisation and the population inversion in the laser, and 
q, e denote the same variables for the absorber. The parameters p, r , ,  w and wr2 are 
the relaxation constants (measured in units of the transverse atomic relaxation rate of 
the laser) and K is the ratio of the field-matter coupling constants for the laser and 
the absorber (Degiorgio and Lugiato 1980). The number of active atoms in the laser 
and the absorber is proportional to sd and %, respectively, and can be varied by external 
pumping. The bifurcation behaviour of ( 1 )  was investigated in detail by Dangelmayr 
et a1 (1985, 1986) under the assumption that a, p and q are real variables. Here we 
consider the general case where a, p and q are complex, thereby taking polarisation 
effects into account. This introduces an important symmetry that leaves the system 
(1 )  invariant. First we can multiply a, p and q by a common phase factor corresponding 
to the diagonal action of SO(2) in C 3 :  ( a , p ,  q )  +eim(,, p ,  q ) .  If a, p and q are restricted 
to real variables then the SO(2) action reduces to the simple sign reversal of ( a , p ,  q )  
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considered by Dangelmayr er a1 (1985, 1986). The second symmetry is the Z(2) action 
( a ,  p ,  q )  + (6, jj, 4 )  which also leaves ( 1 )  unchanged if the system is augmented by the 
complex conjugation of the first three equations. Combining these two symmetries 
leads to the circle group O(2) as the basic symmetry group under which (1) is invariant. 

For all values of the parameters the system (1) possesses the trivial solution T :  
a = p = q = d = e = 0 .  A linear stability analysis along T leads to the following charac- 
teristic equation for an eigenvalue 1 of the linearised system: 

( I  + o)(I + r 2 0 ) {  I 3  + I * ( / +  p + r l )  + l [ r l ( l  + p )  + p (  1 - &ap) - Kpr1(1 - Fe)] 

+[pr l ( l  -d) -KpTI( l  - %)]}=0. (2) 

From (2) we infer that a pitchfork bifurcation (actually a pitchfork of revolution due  
to the O(2) symmetry) leading to non-trivial steady states takes place if 

d = 1 - K ( 1 - g). (3) 

The steady-state bifurcation degenerates to a codimension-two bifurcation of the 
Takens-Bogdanov (TB) type if, in addition to (3), the coefficient of 1 in the characteristic 
equation vanishes. Combining these two equations gives 

as conditions for the occurrence of a TB bifurcation which describes the coalescence 
of a pitchfork and  a Hopf bifurcation with infinite period. 

If d and % are close to their critical values dc and %, then the flow of (1) is 
contracted to a two-dimensional complex (or four-dimensional real) centre manifold 
(Carr 1981, Guckenheimer and Holmes 1983) in virtue of the nilpotent Jordan block 
corresponding to the zero eigenvalue of the linearised system. Following DK we 
parametrise the centre manifold by complex variables ( U ,  w )  E CZ and describe the flow 
on it by the TB-normal form 

V = w  ( 5 a )  

~ = p ~ +  vw +[AlulZ+ Blw12+ C ( U $ +  ijw)]v+ Dlvl'w. ( 5 6 )  

In (5), quintic and higher-order terms in (U, w )  have been neglected. Details of the 
reduction of (1) to ( 5 )  are presented in the appendix; here we summarise the results. 
The parameters p and v are unfolding parameters which depend on  

A & = & - 4 ,  A % = % - % ,  

and vanish for A d  = A %  = 0. To linear order they are given by 

p = - ( r l p / l o ) ( h & - ~ h % )  ( 6 a )  

v = ( p / / ; ) [ (  1 + p ) A d  - KrI( r l  + p ) h % ]  ( 6 6 )  
where 

lo= - ( I +  rl + p )  ( 7 )  
is a non-degenerate eigenvalue of the linearisation of (1) for & = d, and % = %,. The 
non-linear coefficients A, D and 

M = Z C + D  (8) 
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are given by 

M = r ? M l / [ w r ; ( l  - r l ) l i ]  ( 9 c )  

where 

M I  = 1 0 [ ~ ( 1  + p ) ( 2 r ,  + wrJ - rlr:(rl + p ) ( 2 +  w)]+3wr2( l  + p ) ( r ,  + p ) ( K r I  - r J .  ( 9 d )  

The coefficient B has not been computed explicitly because it plays no role in the 
qualitative behaviour of (5) (cf D K ) .  

3. Division of the parameter space 

In a vicinity of A d = A %  = O  the dynamics of ( 1 )  is determined by the normal form 
(5) which has been analysed in detail in DK. The bifurcations organised by (5) depend 
crucially on the non-linear coefficients A, D and M. As in the real case (Carr 1981, 
Guckenheimer and Holmes 1983, Knobloch and Proctor 1981) there are two main 
cases to be distinguished, namely A>O (subcritical steady lasing) and  A<O (super- 
critical steady lasing). These cases are further distinguished according to the ratio 
M I D  and sgn M (cf figures 3 and 6 in DK).  For A < O  we encounter eighteen different 
subcases, denoted by I*, I I* ,  . . . , IX*. Here the signs '+' or ' - '  refer to sgn M and 
the roman numerals correspond to specific ranges of M /  D, defined by: I :  M /  D < 0;  
11: m > M / D > a , ;  111: a , > M / D > a , ;  . . . ;  I X :  a , > M / D > a , .  The numbers 
a,( 1 S j  s 8 )  are given by 

( l o a )  

Analogously, for A > 0, we encounter eight subcases I*, II*, III* and  IV* that occur 
for M /  D < 0 and CO > M /  D > a,, a ,  > M /  D > a 8 ,  a ,  > M /  D > a , ,  respectively, where 
the signs '*' refer to sgn M as before, and 

( a l , .  . . , a,) = (0 ,  1 ,  i, 3, 1.35, 1.43,$, 2 ) .  

ag = 5.  ( l o b )  
The task is now to locate the different cases described above in the space of the 

physical parameters. Confining ourselves to K = 1 ,  we have to investigate the four- 
dimensional ( r , ,  r,, p, w )  space, restricted to positive values of the variables. Since d, 
(equations ( 4 ) )  is positive we have the further restriction r, < 1 .  This physically 
admissible domain of the parameter space is divided into two main regions by the 
equation 

( 1 1 )  rz = r*c = ( 1  + p ) / ( r 1 +  P )  

corresponding to A < 0 (1 ,  > rZc )  and A > 0 ( r ,  < rZc). The region { A  < 0) is divided 
further into subregions by the set of equations 

M = a,D (12)  
where 1 S j  G 8 .  Similarly we obtain a division of the region { A  > 0 )  by D = 0, i.e. 
r2 = r l ,  and by ( 1 2 )  with j = 1 ,  8,9.  
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The division of the parameter space is most conveniently discussed in terms of 
( r l ,  r 2 )  sections for fixed generic values of (0, p ) .  To this end the ( w ,  p )  plane is 
divided into a number of open regions by the curves w = w , ( p ;  a, ) ,  r = 0, 1,2, defined 
by 

m o b ;  a,) = 2/[(4- a,)(l +PI1 l c j c 8  

w 1 ( p ; a, ) = (4 + 2P )i [ 1 - a, + P (2 - a, ) 1 l S j S 7  (13)  

w z b ;  0,) = 2w1b-J; a,) l s j s - 7  

as shown in figure 1.  If ( U ,  p )  is in one of these regions we obtain a certain configuration 
of curves in the ( T I ,  r z )  plane which constitute the boundaries between the various 
cases 12, II* etc. This division of the ( r l ,  r 2 )  plane undergoes a qualitative change 
when ( U ,  p )  crosses one of the curves (13) .  For (U,  p )  in region 1 of figure 1 (0<  w < 
w o ( p ;  a l ) )  we find the division of the ( r l  , r2) plane as sketched in figure 2( a ) ,  with the 
intersection between { A  = 0) and  { M = a,D} given by r l  = (2 - a,/2)w( 1 + p ) .  All curves 
{ M  = a,D} pass through the point r l  = rz = 1 ,  although for 2 s j s 7 only the part above 

Figure 1. Division of the (U ,  p )  plane by the curves w 0 ( p ;  a,) (chain curves) w , ( p ;  a,) (full 
curves) and w , ( p ;  a,) (broken curves), defined by (13) .  Each curve is labelled by its value 
a,. The oo curves separate the regions 1 through 9 as indicated in the figure. Only those 
corresponding to a,  and ag are shown explicitly. The regions 10 and ( I ,  j )  are bounded 
by the w ,  and w 2  curves (see text). The termination points of the chain curves on the w 
axis are given by wo,,=2/(4-a,)  yielding (wo  ,,,..., w o , , ) = ( 0 . 5 ,  0.67, 0.73, 0 .75 ,  0.755, 
0.78, 0.86, 1 ) .  The full and the broken a1  curves terminate at w = 4 and w = 8, respectively. 
When p + cc the full curves approach the asymptotes w = w,,,  = 2/ (2  - a,) yielding 
(to1., , . . . , U, , , )  = (1 ,2,2.67,3,3.08,3.51,6) ,  whereas the broken curves approach w = Zw,,, . 
When w + m  both the full  and the broken curves approach, for 2 S j G 7 ,  the values 
p ,  = ( a ,  - 1)/(2 -a , )  yielding ( p z , .  . . , p , )  = (0, 0.34, 0.5, 0.54, 0.75, 2).  No attempts are 
made to preserve scales. 
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Figure 2. The division of the ( r , ,  r 2 )  plane for (U, p )  in regions 1, 10, (5,3) and ( 7 , 7 )  of 
figure 1 is sketched in ( a ) ,  (b) ,  ( c )  and ( d ) ,  respectively. The full curve is defined by 
r2 = r2c (equation (1  1) )  and distinguishes the main sign cases A < 0 ( r 2  > r2J and A > 0 
( r 2  < r2cj. It terminates on the r, axis at r2 = (1 + p ) / p .  The broken curves labelled by 
a, (1 s j s 9) correspond to M = ajD. For 2 5 j 5 7 they are restricted to the domain { A  < 0} 
and for j = 9 to { A  > 0). The latter terminates on the rI axis at r2 = (1 + p ) / 2 p .  The other 
intersection and termination points as well as the asymptotes depend on ( U ,  p )  and are 
given in the text. The line D = 0 is given by r ,  = r 2 .  Each of the main domains { A  < 0} 
and { A  > 0} is divided by the broken curves into a number of regions associated with one 
of the cases I*,  I I I , .  . . of normal form ( 5 )  as marked in the diagrams. No attempts are 
made to preserve scales. 
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r 2 =  r2c is relevant so that these boundaries terminate on {A=O} .  When ( q p )  
approaches the curve w = w o ( p ;  a , )  from below, the intersection of { M  = a l D }  with 
{ A  = 0} in figure 2 ( a )  moves towards ( r , ,  r2 )  = ( 1 , l )  and remains there for w 3 w o ( p ;  a l ) ,  
thus leading to the disappearance of region I+ in { A  > 0). Similarly, for ( w ,  p )  
approaching successively the curves w = w o ( p ;  a,) ( j  = 2 , 3 ,  . . . , 7 ) ,  the termination 
points of { M  = a,D} on { A  = 0) move towards ( r l ,  r2 )  = ( 1 , l )  so that in region 8 of 
figure 1 the boundaries { M  = a,D} in the ( r l ,  r2 )  plane emerge from ( r l  , r z )  = (1, 1) for 
1 S j  e 7 and extend to r2 = CO within the region { A  < O}. The same event takes place 
for the boundary { M  = a&} when ( U ,  p )  approaches w = w, (p ;  a g ) ,  i.e. for ( U ,  p )  in 
region 9 of figure 1 the region IV- in { A  > 0) has disappeared. 

When r2 + CO, the curves { M  = a,D} tend to limiting values rl  = r, > 0 which are 
determined by the quadratic equations 

r : ( 2 + w ) +  r , ( l  + p ) ( 2 + w ) - ( 3  -a,)w(l + p )  = 0. 

For 1 < j < 7 these limiting values satisfy 0 < r lJ  < 1 if w < w , ( p  ; a,) and r lJ  > 1 if 
w > w , ( p ;  a,), whereas O <  rl ,8< 1 for all values of ( w ,  p ) .  Consequently, when w = 
w l ( p ;  a,) (full curves in figure 1) is approached from below, the boundary { M  = u,D} 
develops for 2 S j  e 7 a termination point ( I I ,  y2) = (1, r z J )  on the boundary { r ,  = l} of 
the physically admissible domain (figures 2( b, c ) ) .  The rz coordinate of the termination 
point is given by 

and satisfies rZJ > 1 for w , ( p ;  a,) < w < w 2 ( p ;  a,). Thus in region 10 of figure 1, defined 
by w , ( p ;  a, )<  w 2 ( p ;  a,), we obtain the division of the ( r l ,  r 2 )  plane as sketched in 
figure 2 ( b ) .  If w > w 2 ( p ;  a,) we have O <  r 2 J < 1  which implies that the boundary 
{ M = a,D) disappears for 2 G j  G 7 ,  whereas in the case j = 1 it is located entirely in 
{ A  > 0) and leads here to the appearance of region IV+ (figures 2(c ,  d)).  

i 6, 1 J i and i = 7, j = 4, 5 ,  6, 7 in the ( U ,  p )  
plane by (cf figure 1 )  

We define the regions ( i ,  j )  for 1 

= { w l b ;  a,)  < w < w , ( p ;  a,*,), w 2 b ;  a, )<w < w 2 b ;  q + 1 ) }  

where we have set w , ( p ;  a 8 )  = w 2 ( p ;  4) = CO. In these regions the boundaries { M  = akD} 
with 8 2 k > i extend in { A  < O }  towards r2 = CO (i.e. O <  r l , k  < l ) ,  whereas those with 
2 s k sj have disappeared and those with j < k 6 i terminate on { r ,  = I}. To illustrate 
this behaviour we have sketched the division of the ( rl , r2 )  plane for ( U ,  p )  in regions 
( 5 , 3 )  and (7,7) in figures 2 ( c ,  d ) ,  respectively. This completes our discussion of the 
division of the parameter space. 

4. Discussion and conclusion 

From figures 1 and 2 we conclude that the cases A < O :  I+ ,  11- through IX-, and 
A > 0: I*,  11-, 111-, IV- of the normal form ( 5 )  appear in the laser with a saturable 
absorber for K = 1. Stability and bifurcation diagrams corresponding to all cases of 
the normal form are summarised in 0 7 of DK. Some of them are also discussed by 
Peplowski and Haken (1988). We will not present all bifurcation diagrams that are 
relevant for the physical system, but confine ourselves to those which occur for all 
values of ( w , p ) .  These are the cases A > 0 :  I-, 11-, 111- and A<O: 11-, 111-. The 
ensuing bifurcation diagrams are shown in figure 3(a, 6). The notations ss, TW, sw 
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( a i  A > O  

i b i  A<O 

Figure 3. Bifurcation diagrams for some of the cases of normal form ( 5 )  that occur in the 
laser problem. They show appropriate amplitudes of the various solutions of ( 5 )  (T, S S ,  

sw, TW, M W )  plotted against A d ,  The meanings of the solutions are explained in the text. 
Ordinary bifurcations are shown as dots and homoclinic or heteroclinic bifurcations as 
small circles (see DK for a more detailed discussion of the nature of the various bifurcation 
points). The signs represent stability symbols along the branches: I - '  refers to negative 
and '+' to positive real parts of the relevant eigenvalues. 

and MW, which are used in figure 3 to denote the solutions of (5), are adopted from 
DK. They are abbreviations for steady states, travelling waves, standing waves and  
modulated waves, respectively. This notation has its origin in a wave context, where 
U exp(ikx) represents a wave field in an  infinitely extended system with x being the 
space variable and k the wavenumber (see, e.g., Dangelmayr and  Knobloch 1986). 
The solution r represents the rest state U = w = 0, i.e. the spatially and  temporally 
homogeneous solution. 

For the laser system considered in this paper the meaning of the solutions of (5) 
is different. Here, a represents the envelope of the electric field E, i.e. E = 
a (  t )  exp[i( kox - wo.)], where T is a fast and  t a slow time variable and  wo and k, are 
the basic frequency and  wavenumber of the laser. Because a is proportional to U on 
the centre manifold, we may regard U as the complex amplitude of the lasing field. 
Along the ss branch the magnitude and the direction of U is constant so that this 
solution corresponds to a linearly polarised laser field. By virtue of the O(2) symmetry 
the polarisation direction is not unique and, therefore, will be determined by fluctu- 
ations. On a r w  branch U has the form U = uo exp( in t )  where R and  luol are determined 
by v and p. Consequently, TW represents a circularly polarised laser field. The sw 
and M W  solutions correspond to modulations of the linearly and  circularly polarised 
fields, respectively. In particular, close to a homoclinic or heteroclinic bifurcation we 
expect them to be observed as pulsed modes with sharply defined spikes (Q-switch 
solutions, see Arimondo 1985). 

An important consequence following from our analysis is that a supercritical TW 
always possesses a stable sub-branch, whereas sw is always unstable if no M W  exists. 
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A stable sw branch occurs only when a M W  is also present, and then a stability exchange 
between TW and s w  takes place via MW. This stability exchange may be continuous 
(stable M W )  as in the cases 111- for A < 0 and  A > 0 (figure 3) or  hysteretic (unstable 
MW) as in the cases A < 0: IV- through IX- (see figure 8 in DK) .  On the other hand, 
if (5) were analysed with (U, w )  restricted to real values, TW and  M W  would not be 
present whereas sw would always appear to be stable (Carr 1981, Guckenheimer and  
Holmes 1983, Knobloch and Proctor 1981). Thus the real treatment can lead to 
erroneous results. We mention here an investigation of Elgin and Molina Garza (1987) 
who studied a related problem, corresponding to the case rl = 0 of the present paper. 
These authors obtained a supercritical Hopf bifurcation for some negative value of p. 
However, since they confined themselves to real variables, they found a stable sw and 
no TW. We expect that a complex treatment will reveal an unstable sw in favour of a 
stable TW. Corrections of this type are also expected when the analyses of Dangelmayr 
et a1 (1985, 1986) are extended to the complex case. 
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Appendix 

In order to derive the TB-normal form ( 5 )  from the basic equations (1) we begin with 
the linear transformation ( a ,  p ,  q )  + ( V, W, Z ) ,  defined by 

a = r , V + ( l + p ) ( r , + p ) Z  

p = r l (  V -  W )  - ( 1  + p ) Z  ( A I )  

= K v - ( K / rl ) W - K ( rl -k p )z. 
The resulting system of O D E  for (V ,  W, Z, d ,  e )  has the form 

V = ( r l s 3 - l c l ) @ +  W - ( s z s , / r , s l I ~ ) Y ( d - r : e )  

W =  - r l l o @ + ( l / s , l , ) Y ( s , d  - r l s z e )  

i = r , O + I , , Z + ( l / s , I t ) Y ( d - r : e )  

d = - o d  +o[r~~V/2-s~s3~Z~2-r~X,+r,s~(s,-l)XZ-rIs~s,X~] 

e = - r 2 ~ e + o ~ [ r l / ~ / 2 - s 2 s ~ ~ ~ / 2 - ~ l + ~ 3 ( ~ 2 - r I ) ~ 2 - ( ~ Z ~ 3 / r l ) ~ 3 ~  

where 

s, = 1 - rl s 2 = l + p  s , = r , + p  (A3) 

Y =  rl V+s,s,Z XI = Re( V W )  X2 = Re( V Z )  X 3  = Re( W Z )  (A4) 

and 

0 = 6 ,  v -  lY2 W -  a3z 
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with 

6, = ( p / / i ) ( A d - ~ A % )  

02= (p / r l I ? ) ( r ,Ad-KA%)  (A6) 

7Y3 = ( p / r l l ~ ) ( s 2 A d -  ~ r , s , A % )  

i.e. the linearisation of (A2) is in Jordan-normal form for A d  = A% = 0. Approximating 
the centre manifold of (A2) by 

Z=O 

d = r ; \ V l ’ + ( r , / ~ ) ~ ( 2 + 0 ~ ) ( l  W J 2 - ~ X 1 )  (A71 

e = ( ~ r , / r ~ ) I  v 1 2 + ( ~ / r : 0 2 ) ( 2 r ,  +wr2)(l  w I * -  r 2wx , )  

yields the reduced system 

V =  (r1s3 - lO)(tl l  V- a2 W)+ W +  [all VI2+ b,( WI2+ c,( V w +  VW)] V 

W = -rl lo( 6, V - 1 9 ~  W) + [a31 VI2+ b3/ WIZ+ c3( V”+ VW)] V 
(A8) 

where the same notation as in DK (equation (2.5)) has been used for the cubic coefficients 
a,, b, ,  etc. In terms of the physical parameters they are given by 

a1 = (r:s2S3/slr21?)(KrI - r 2 )  

b, = ( r:s2s3/ s, w2r:l:)[ K (2r, + wrJ - r:(2 + U ) ]  

c, = ( r :s2s3/2ws ,r : l ’ , ) [ r : (2+ w )  - ~ ( 2 r ~  + w r 2 ) ]  

a3 = ( r ? / s l  r210)( r 2 s 3  - K s 2 )  

b, = ( r ~ / s l w 2 r ~ l o ) [ ~ 3 r l r ~ ( 2 + ~ )  - s 2 ~ ( 2 r l  +OM,)] 

c3 = ( r:/2ws,r:Io)[s2~(2r, + wr2)  - r , r f ~ 3 ( 2 +  w ) ] ,  

By means of the near-identity transformation 

v = V - 4 ~ ~ 1  VI’V -4bI V 2  W 

w = w + ( T i s 3  - l o ) (  6, v- 62 W) + a, /  VJ2V+$c, v2 w 
we obtain from (A8) the normal form ( 5 )  with 

p = -rl lo6, v = (rls3 - 10)191+ r I lo62  

and 

A = a, B =  b 3 + c l  C = a , + c ,  D = a , .  (A12) 

The expressions (6) and ( 9 a - d )  follow from (A6), ( A l l )  and (A9), (A12), respectively. 
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